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Interaction forces in quasi-two-dimensional charged dispersions
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A ‘‘predictor-corrector’’ inversion of the Ornstein-Zernike equation has been presented for extracting the
pair potentialu(r ) between colloidal particles from the radial distribution functiong(r ) or the static structure
factorS(q) of dispersions confined to a single layer. The method, an extension of the three-dimensional analog
presented earlier, is used to obtainu(r )’s for recently published experimental data on confined dispersions. The
results confirm unambiguously the existence of an attractive force inu(r ), even for a set of data that has been
described using a purely repulsiveu(r ) previously. We also illustrate the potential effect of experimental
artifacts in imaging experiments that can lead to an apparent attraction inu(r ) and offer an explanation for the
persistence of attraction or its disappearance as a function of the distance between the plates used to confine the
dispersions in the experiments.@S1063-651X~98!09703-7#

PACS number~s!: 82.70.Dd, 05.40.1j, 61.25.Hq
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I. INTRODUCTION

It has been well established in the past decade that co
dal dispersions serve as excellent models of condensed
ter as they exhibit phases very similar to those of atom
systems@1,2#. Because of the relatively large size and t
slow dynamics of the particles, the motion of the partic
can be tracked in real time and recorded using video mic
copy. Recent experiments on charged dispersions confine
a single layer@1,3,4# have further shown that these system
are also ideal for studying two-dimensional~2D! phases. In
fact, the use of colloids as model systems allows one to st
phenomena that are not easily accessible in atomic sys
@2#. The analyses of the resulting experimental observatio
however, require self-consistent effective pair potentials
tween the particles, for a number of reasons. For instanc
the case of charged particles the effective charge on the
ticles often differs significantly from the charge estimat
from titration experiments. The exact electrolyte concen
tion in the dispersion is also difficult to estimate in ma
cases. In addition, there is a strong likelihood of many-bo
effects on the potential at conditions close to phase tra
tions. Finally, as we shall see later in this paper, the effec
interaction potentials between particles confined betw
two plates differ from the corresponding potentials at b
conditions and remain ill-understood currently.

The macroscopic properties of charge-stabilized colloi
dispersions are usually understood using a theory of inte
tion potential formulated by Derjaguin, Landau, Verwey, a
Overbeek about 50 years ago@5#. The effective pair potentia
between two charged particles~‘‘macroions’’! in the
Derjaguin-Landau-Verwey-Overbeek~DLVO! theory is
dominated by a repulsive interaction given by the Yuka
form for low elecrostatic screening:
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wherer is the distance between the macroions of diametes,
k21 is the Debye screening length,e is the dielectric con-
stant of the suspending medium, andZe is the charge of the
macroion. The above form of the DLVO potential is val
only for low surface charges and for dilute dispersions. N
ertheless, the DLVO potential has been used to explai
variety of experimental observations ranging from sedim
tation data, phase boundaries in phase diagrams, osm
pressures, and elastic constants, at least qualitatively@6#. In
contrast, there is very little information currently on the pa
potential appropriate for charged colloids confined betwe
two charged plates.

The objective of this paper is to outline a method f
extracting effective pair potentials from positional corre
tion functions obtained from 2D experiments using colloi
and to shed some light on the interpretation of the extrac
potentials. In Sec. II, we review some recent experimen
studies designed to probe the microscopic structure of c
fined fluids. In Sec. III, we discuss a 2D version of the i
version of Ornstein-Zernike equation for extracting effecti
potentials from positional correlations among the particl
This method is then applied in Sec. IV to compute
generated data for a 2D Lennard-Jones fluid at a large
fraction of 0.5 to examine the accuracy of the method a
then to the experimentalg(r ) measured using digital video
microscopy by Kepler and Fraden@3# and Carbajal-Tinoco
et al. @4#. We conclude Sec. IV with a discussion of th
influence of experimental artifacts on the interpretation
the experimental data in terms of effective interaction pot
tials. We conclude with a summary in Sec. V.

II. QUASI-2D SYSTEMS OF CHARGED PARTICLES

A number of papers have appeared in recent ye
@1,3,4,7,8# on structural transitions in quasi-2D systems
charged colloidal dispersions. Some of these studies re
the existence of a long-range attractive component in
effective pair potential and raise interesting questions on
physical origin of such an attraction. We shall review som
3227 © 1998 The American Physical Society
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3228 57K. SRINIVASA RAO AND RAJ RAJAGOPALAN
of these studies in this section in order to motivate the fo
of the present paper.

Recently, Kepler and Fraden@3# have examined system
consisting of aqueous dispersions of negatively char
polystyrene particles of diameters51.27 mm confined be-
tween two glass plates~also negatively charged! separated by
a gap of 2–6mm at relatively low number densities of th
particles~corresponding to area fractions ranging from 0.0
to 0.03!. The instantaneous configurations of the particles
then recorded using time-lapse video microscopy. The
periments provide the radial distribution functiong(r ), con-
structed from averaging over 500–5000 ‘‘snapshots’’~con-
figurations!. We refer to these systems asquasi-2D systems
since the particles are not strictly confined to a 2D plane
can wander away from the plane~even if such ‘‘excursions’’
are small!. The implications of such excursions to the inte
pretation of effective potentials will be addressed in S
IV C.

The experiment of Kepler and Fraden focuses on inte
tion forces in confined dispersions, but the analysis of
data is not straightforward since some of the crucial para
eters needed in the analysis are not accessible through d
measurements. For example, the effective charge on the
ticles is one such quantity and remains an unknown inboth
2D and 3D experiments. In addition, in the case of quasi-
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systems such as the one in the Kepler-Fraden experime
the narrow spacing between the confining plates makes
ionic strength of the dispersion an unknown as well beca
of the significant plate-solution interfacial area relative to t
volume of the solution and the possible leaching and io
association or dissociation effects. In the absence of any
sonable guidance as to the form of the potential, Kepler
Fraden resorted to a modified Lennard-Jones potential of
type shown below since a purely repulsive potential failed
predict the experimentalg(r )’s adequately. Kepler and
Fraden have fitted the experimentally measuredg(r )’s using
Brownian dynamics simulations and a modified Lenna
Jones potential given by

u~r !54eF S a

z D 2a

2S a

z D aG , ~2!

wherez5r /s21, e is the depth of the potential minimum
and a and a are empirical fitting parameters. This analys
shows the existence of a long-range attractive componen
u(r ) and a minimum in the potential of about 0.2kBT, which
vanishes as the electrolyte concentration goes down.

The Kepler-Fraden potentials have been reinterpreted
Tata and Arora@9# in terms of the so-called Sogami potenti
@10#
uSog~r !5H `, r ,s

~Ze!2
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where all the symbols retain their meanings as in Eq.~1!.
The analysis of Tata and Arora consists of adjusting the
rameters of the Sogami potential to fit the potentials of K
pler and Fraden@3# by fixing the magnitude and the positio
of the minimum. This amounts to adjusting the values for
charge Ze of the particle and the dimensionless Deb
screening lengthks so as to make the Sogami form of th
potential fit the Kepler-Fraden results. More importantly,
be able to do this successfully, Tata and Arora had to s
the charge on the particle with respect to the concentratio
the added salt in an arbitrary fashion.

The experiments of Kepler and Fraden have been
tended to larger particle concentrations~i.e., dimensionless
number densityrs2 from 0.023 to 0.48, close to freezin
conditions! by Carbajal-Tinocoet al. @4#. The measured
g(r )’s, however, have been analyzed somewhat more
mally using some of the approximate closures to
Ornstein-Zernike equation, such as the mean spherical
proximation~MSA!, the Percus-Yevick~PY! approximation
and the hypernetted-chain~HNC! approximation. We shal
comment on such ‘‘single-step’’ inversions later in this p
per. The analysis of Carbajal-Tinocoet al. also reveals the
existence of a long-range attraction in confined dispersi
even at large particle densities.

Since the experimental measurements of Kepler
Fraden and Carbajal-Tinocoet al. yield effectivepotentials
a-
-

e
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x-

r-
e
p-

-

s

d

~rather thanbare pair potentials! because of either many
body effects or the effects of the confining plates or~as we
discuss in Sec. IV C! the excursions of the particles awa
from the 2D layer, attempts have also been made to mea
the potentials in very dilute dispersions or between isola
pairs of particles. Notable among such experiments is
one by Crocker and Grier@8#, who have employed two op
tical traps to hold an isolated pair of particles at a kno
distance from each other and to record their mutual distan
of separation after release, from which the pair potential
been obtained using Boltzmann distribution. Crocker a
Grier have also corrected for the out-of-plane motions of
particles so that the actual distances between the part
can be measured accurately. The result of Crocker and G
also reveals an effective attraction between the partic
when the distance between the plates confining the parti
is of the order of a few particle diameters. The attractio
however, vanishes for smaller distances between the pla
We shall return to this in Sec. IV C.

III. INVERSION BASED ON INTEGRAL-EQUATION
FORMALISM

A. Structure factor S„q… for 2D liquids

The Ornstein-Zernike integral equation theory of fluids
three dimensions reduces formally to the same form in
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57 3229INTERACTION FORCES IN QUASI-TWO-DIMENSIONAL . . .
case of 2D liquids with all the correlations retaining the
physical meaning@11#. The only significant differences oc
cur in the volume integral, which now becomes an area
tegral, and in the manner in which the 2D Fourier transfor
are carried out. The static structure factorS(q) for an isotro-
pic system is related to the radial distribution functiong(r )
by

S~q!511rE e2 iq•r@g~r !21#dr . ~4!

Carrying out the integral over angleu leads to@12#

S~q!5112prE r @g~r !21#J0~qr !dr, ~5!

where J0(qr) is the zeroth-order Bessel function given b
the defining relation

J0~qr !5
1

2pE e2 iq•rdu. ~6!

The occurrence of the Bessel function in Eq.~5! leads to a
crucial difference in the way the integral transform is eva
ated by discretization in the 2D space. The discrete Fou
integral transform is given by@for N data points, withg(r )
available forr<R]

S~qi !5112pr(
j 51

N

r j@g~r j !21#J0~qir j !dr j , ~7!

wherer j5m jR/mN , m i ’s being the roots of the Bessel func
tion, andqi5m i /R. For givenR andN, ther i ’s andqi ’s are
fixed and equispaced in the 3D discrete transform. On
other hand, in the 2D version, onceR andN are fixed,r i ’s
andqi ’s are determined by the zeros of the Bessel funct
J0(qr), a requirement needed to satisfy the orthogona
property of the Fourier transform. Therefore, the discr
version of the integral given in Eq.~7! takes the form of the
trapezoidal rule with unequal intervals@although, in the limit
of large N, the discretization in Eq.~7! becomes almos
equally spaced#. The importance of satisfying the orthogon
property when evaluating the Fourier integral transforms
been demonstrated by Lado@12# for simple Gaussian func
tions.

B. Ornstein-Zernike inversion of S„q…

The ‘‘predictor-corrector’’ method we shall use here f
the extractingu(r ) for a given experimentalg(r ) or S(q) is
identical in concept to the one proposed by Reattoet al. @13#
for 3D systems. We briefly summarize the steps involved

The Ornstein-Zernike equation is given by

g~r !215c~r !1rE c~r 8!@g~ ur 2r 8u!21#dr 8 ~8!

and the exact closure relation required for solving Eq.~8! is
written as

g~r !5e2bu~r !1g~r !212c~r !1B~r !, ~9!
-
s

-
er

e

n
y
e

s

wherec(r ) is the direct correlation function andB(r ) is the
so-called bridge function for givenu(r ) and r. It follows
from Eq. ~8! that

c~r !5
1

2prE S 12
1

S~q! De2 iq•rdq. ~10!

As B(r ) in Eq. ~9! is generally analytically intractable an
is difficult to evaluate numerically, one often resorts to a
proximations forB(r ) in solving the Ornstein-Zernike equa
tion for determiningS(q)’s for given u(r )’s. The approxi-
mations to the closure equation leading to integral-equa
theories~such as the HNC equation, the PY equation, and
MSA! for 2D cases remain identical to the 3D counterpa
@11#.

The pair potentialu(r ) can be determined uniquely from
known g(r ) and/orS(q) by rewriting Eq.~9! as

bu~r !52 ln g~r !1g~r !212c~r !1B~r ! ~11!

if one can evaluateB(r ). However, sinceB(r ) cannot be
computed unlessu(r ) is already known, approximations ar
usually made forB(r ) so that Eq.~11! can be used directly
to obtainu(r ). The simplest approximation, namely, igno
ing B(r ) in Eq. ~11!, corresponds to the HNC approximatio
which we shall comment on in Sec. IV B. Notice that a dire
use of Eq.~11! with approximations that allow the right-han
side of the equation to be determined explicitly in terms
experimentally accessible quantities does not require an
erative corrections toB(r ) and hence is known assingle-step
inversion.

As we have discussed for the case of 3D systems@14#, Eq.
~11! can also be solved iteratively by writing it relative to th
closure for a suitably chosen ‘‘reference’’ potentialu8(r ) as

bu~r !5bu8~r !1 lnS g8~r !

g~r ! D1@g~r !2g8~r !#

2@c~r !2c8~r !#1@B~r !2B8~r !#, ~12!

where the prime ong8(r ), c8(r ), andB8(r ) identifies them
as the ones corresponding to the reference potentialu8(r ).

FIG. 1. The radial distribution functiong(r ) from Monte Carlo
simulations for a 2D Lennard-Jones fluid atrs2 5 0.5.
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3230 57K. SRINIVASA RAO AND RAJ RAJAGOPALAN
An iterative predictor-corrector method that refinesu8(r ) at
each step such thatB8(r )→B(r ) then leads to the following
predictor foru(r ):

bui~r !5bui 21~r !1g~r !2gi 21~r !1 lnS gi 21~r !

g~r ! D
1

1

2prE F 1

S~q!
2

1

Si 21~q!Ge2 iq•rdq, ~13!

where we have used Eq.~10! to write thec(r )’s in terms of
the correspondingS(q)’s. The subscriptsi and i 21 in the
above equation denote the results of the corresponding i
tions. If the functionsgi 21(r ) and Si 21(q) are computed
exactly in each iteration in the corrector step@i.e., for the
iterate ui 21(r )], the predictionui(r ) will converge to the
potentialu(r ) corresponding to the giveng(r ) andS(q). An
approximate corrector sufficient for most practical cases~for
3D systems! has been presented elsewhere@14#; here we
shall use a computer-simulation-based corrector.

IV. RESULTS AND DISCUSSION

A. Inversion for a Lennard-Jones fluid

We begin with a test case based on simulated data
order to illustrate the quality of the results that can be
pected from the inversion and the quality of the data need
This is important for interpreting the results based on r
data and for determining the quality of data one needs
demand from physical experiments. The test case we h
chosen is a 2D Lennard-Jones~LJ! fluid at rs250.5 and
T* 5kBT/e51.5. A canonical Monte Carlo simulation wit
225 particles has been used for obtainingg(r ) and S(q),
with an equilibration run of 5000 Monte Carlo steps~MCS!
and a subsequent run of 10 000 MCS for the averages.
resultingg(r ) andS(q) are shown in Figs. 1 and 2, respe
tively, and the extracted pair potential is shown in Fig.
along with the original potential. The result in Fig. 3 show
that the inversion can extract very accurate potentials~within
2–3% error! even under extreme conditions.~In contrast, the

FIG. 2. Structure factorS(q) for the Lennard-Jones fluid ob
tained by a 2D Bessel transform ofg(r ) shown in Fig. 1. The low-
q results forS(q) are obtained directly from the Monte Carlo sim
lations.
ra-

in
-
d.
l

to
ve

he

single-step HNC inversion underestimates the minimum
about 20%, although the location of the minimum is over
timated by only about 5%.!

B. Inversion for confined dispersions

We now examine a few typical sets of experimental d
reported by Kepler and Fraden@3# and Carbajal-Tinocoet al.
@4#. First we consider casec of Kepler and Fraden, which
corresponds to a densityrs2 of 0.0194 ~area fraction of
0.015!. This is one of the cases for which the analysis
Kepler and Fraden indicates a long-range attraction. The
rector steps in the inversions reported in this section
Monte Carlo simulations with 400 particles, an equilibrati
run of 5000 MCS, and an averaging run of 50 000 MCS.
larger number of MCS is used for the averages here~relative
to the averages here LJ case! to minimize the statistical
noise: a problem usually common in the simulation of dilu
systems. The result foru(r ), shown in Fig. 4 along with the
result of Kepler and Fraden, is practically identical to t
potential obtained by Kepler and Fraden and confirms
accuracy of their trial-and-error analysis in this case. This
not the case for the data set corresponding tors250.0307
~casef of Kepler and Fraden!, the result for which is shown
in Fig. 5. In this instance, the Kepler-Fraden analysis lead
an essentially purely repulsive potential, while our inversi
indicates that the effective potential still shows a minimu
with a fairly substantial attractive tail. In both cases, the
verted potentials reproduce the experimentally observed
dial distribution functions very well, as shown in Fig. 6 fo
casef of Fraden and Kepler.

It is instructive to examine the equivalent Sogami pote
tials obtained by Tata and Arora@9# for the Kepler-Fraden
data. As mentioned in Sec. II, Tata and Arora have rein
preted the results of Kepler and Fraden using the Sog
potential in an attempt to account for the physical origin
the attractive tail. The Sogami forms of the potentials o
tained by Tata and Arora are also shown in Figs. 4 and 5
are based on fitting the Kepler-Fraden results by adjus
the parameters of the Sogami potential@10#. The potentials

FIG. 3. The potential based on the iterative ‘‘predicto
corrector’’ method for the Lennard-Jones fluid shown along w
the original potential. The initial potential used in the iteration
also shown.
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57 3231INTERACTION FORCES IN QUASI-TWO-DIMENSIONAL . . .
thus obtained, however, differ noticeably from the Keple
Fraden results and ours, as evident from Figs. 4 and 5. M
importantly, the Tata-Arora results donot reproduce the ex-
perimentalg(r )’s, as illustrated forrs250.0307~casef of
Kepler and Fraden! in Fig. 6, which shows a significant dif
ference ing(r ) near the first-coordination shell. In particula
the differences observed inu(r ) and g(r ) are substantial
enough to affect those properties of the system~e.g., osmotic
pressure! that depend on the core ofu(r ) andg(r ) @15#.

As mentioned earlier, Carbajal-Tinocoet al. @4# have ex-
tended the Kepler-Fraden experiments to larger particle c
centrations, up to near-freezing conditions (rs250.48).
Carbajal-Tinocoet al., however, analyze their data usin
single-step inversion methods~e.g., MSA, PY, and HNC!
mentioned in Sec. III to obtainu(r ). Because such method
resort to severe approximations of the bridge function,
inversion can lead to even qualitatively incorrect potenti

FIG. 4. Pair potential based on the predictor-corrector meth
for casec (rs250.0194) of Kepler and Fraden@3# along with the
Kepler-Fraden result. The result of Tata and Arora@9# is also
shown.

FIG. 5. Pair potential based on the predictor-corrector meth
for casef of Kepler and Fraden@3# (rs250.0307) along with the
Kepler-Fraden result. The result of Tata and Arora@9# is also
shown.
-
re

n-

e
s

~particularly at large particle concentrations or when the
teractions are strong!, as we have noted elsewhere@14,16#.
Under such conditions, the rigorous inversion that we ha
outlined in Sec. III becomes indispensable. In order to exa
ine the effect of using approximate closure relations, we h
inverted the data corresponding to the highest particle c
centration used by Carbajal-Tinocoet al. (rs250.48) using
the predictor-corrector method and the HNC approximat
@which corresponds to takingB(r )50 in Eq. ~11!#. The re-
sults are shown in Fig. 7. While the exact inversion demo
strates the existence of attraction in the potential, one
also see that the hypernetted-chain approximation lead
quantitatively incorrect results.

C. Source of attraction in confined charged colloids

While the inversion method described here clearly est
lishes the existence of an effective attraction in confin
charged dispersions, it of course cannot provide a phys
basis for such an attraction@17#. In this section, we commen

d

d

FIG. 6. Radial distribution functiong(r ) obtained from the ex-
tracted potential for casef of Kepler and Fraden@3#. The original
data andg(r ) based on the Tata-Arora potential are also shown

FIG. 7. Pair potential based on the predictor-corrector meth
for rs250.48 using the data of Carbajal-Tinocoet al. @4#, along
with the inversion based on the hypernetted-chain closure.
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on an important experimental artifact in imaging experime
that can lead to anapparentattraction in the pair potential
We also comment on one possible source of the attrac
when the artifact is corrected in the experiments@8#.

The analyses of Refs.@3,4# assume that the excursions
the particles away from the image plane are negligible. Ho
ever, even small displacements away from the plane
skew the observedg(r ) sufficiently to introduce an apparen
attraction inue f f(r ). Out-of-plane displacements do not ne
essarily appear to be negligible in the above experiment
Kepler and Fraden and Carbajal-Tinocoet al. as can be
noted, for example, from casea in Ref. @3#, which shows
noticeable deviations ofg(r ) from zero eveninside the core.
Similar situations are also apparent from the data
Carbajal-Tinocoet al.

We illustrate our point using Monte Carlo simulations
particles confined between two hard plates separated
(11d)s, whered50 for a strictly 2D system. The particle
are assumed to interact through the repulsive part of a
potential shifted up by the magnitude of the LJ minimu
Figure 8 showsg(r )’s for d50 and 0.5. Theg(r ) for the
quasi-2Dcase~i.e.,d.0) is obtained from particle position
projected onto the image plane, i.e., thex-y plane~as done in
the experiments@3,4#!. The differences ing(r ) for d.0,
particularly the broadening of the primary peak, are indi
tive of the softening ofue f f(r ) and of the possibility of at-
traction. The differences of importance in the extraction
the pair potential show up in the limit ofq→0 in the struc-
ture factorS(q), as shown in Fig. 9. Therefore, it often b
comes important to use both good qualityg(r ) and S(q) in
the inversion~see also@16#!. The potentials inverted usin
the method of Sec. III and the data in Figs. 8 and 9
shown in Fig. 10 and clearly demonstrate the influence
out-of-plane excursions of the particles on the effective
tential. In particular, the effective potential has an attracti
although the actual potential is purely repulsive.

These results donot rule out other sources of attraction. I
an attempt to correct for the out-of-plane movements of
particles, Crocker and Grier@8# have conducted a series o
experiments in which thez-directional displacements of th

FIG. 8. Radial distribution functionsg(r ) from Monte Carlo
simulations for 2D~i.e., d50) and quasi-2D~i.e., d50.5) disper-
sions.
s
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n
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f

by

J
.

-

f

e
f
-
,

e

particles have been estimated using variations in the im
intensity. The Crocker-Grier experiments isolate a pair
particles using two optical tweezers and follow the interp
ticle separation as a function of time once the particles
released. The pair potentialu(r ) can then be obtained from
the tranjectories of the particles. The results of Crocker a
Grier show thatu(r ) is purely repulsive when the charge
glass plates confining the dispersion are far apart. Howe
u(r ) shows attraction for smaller separationsd between the
plates and the attraction vanishes on further reductions in
plate separation.

Because thez-directional displacements have been a
counted for in the Crocker-Grier experiments, the attract
in u(r ) in this case cannot be attributed to the out-of-pla
excursions of the particles. It is likely that the effective a
traction here arises from the repulsion of the wandering p
ticle by the charged, confining plates toward the other p
ticle when the plates are far enough to allow excursions
close enough to exert influence. However, whend is very
small, the particles are essentially confined to the midpl
and the attraction would be expected to vanish. The ma
tudes and shapes ofue f f(r )’s, of course, will depend on the

FIG. 9. Structure factorsS(q) from Monte Carlo simulations for
2D ~i.e., d50) and quasi-2D~i.e., d50.5) dispersions.

FIG. 10. Inverted potentials for the data shown in Figs. 8 and
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experimental conditions~e.g., charges on the plates and t
particles, ionic equilibria, etc.! and the quantitative detail
will depend on more than the above geometric argumen

V. CONCLUDING REMARKS

We have presented a 2D extension of the compu
simulation-based predictor-corrector inversion method
the extraction of the interaction potential from structural d
@g(r ) or S(q)]. When applied to the data of Kepler an
Fraden@3# and Carbajal-Tinocoet al. @4#, the method con-
firms the appearance of attraction inu(r ) unambiguously.
Moreover, even in the one case for which Kepler and Fra
ce
r-
r
a

n

report only repulsion, the predictor-corrector inversi
shows the existence of attraction. We have pointed out
need for correcting for the out-of-plane motions of the p
ticles in imaging experiments and suggest a reason for
appearance of attraction~and its subsequent disappearanc!
even when the experiments account for the excursions of
particles.
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