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A “predictor-corrector” inversion of the Ornstein-Zernike equation has been presented for extracting the
pair potentialu(r) between colloidal particles from the radial distribution functgim) or the static structure
factorS(q) of dispersions confined to a single layer. The method, an extension of the three-dimensional analog
presented earlier, is used to obtaifr)’s for recently published experimental data on confined dispersions. The
results confirm unambiguously the existence of an attractive foraérin even for a set of data that has been
described using a purely repulsivgr) previously. We also illustrate the potential effect of experimental
artifacts in imaging experiments that can lead to an apparent attractign)irand offer an explanation for the
persistence of attraction or its disappearance as a function of the distance between the plates used to confine the
dispersions in the experimen{$1063-651X98)09703-1

PACS numbegps): 82.70.Dd, 05.40tj, 61.25.Hq

[. INTRODUCTION wherer is the distance between the macroions of diameter
«x 1 is the Debye screening length,is the dielectric con-
It has been well established in the past decade that collostant of the suspending medium, afd is the charge of the
dal dispersions serve as excellent models of condensed matvacroion. The above form of the DLVO potential is valid
ter as they exhibit phases very similar to those of atomimnly for low surface charges and for dilute dispersions. Nev-
systems[1,2]. Because of the relatively large size and theertheless, the DLVO potential has been used to explain a
slow dynamics of the particles, the motion of the particlesvariety of experimental observations ranging from sedimen-
can be tracked in real time and recorded using video microgation data, phase boundaries in phase diagrams, osmotic
copy. Recent experiments on charged dispersions confined pessures, and elastic constants, at least qualitatféélyin
a single layef1,3,4] have further shown that these systemscontrast, there is very little information currently on the pair
are also ideal for studying two-dimension@D) phases. In  potential appropriate for charged colloids confined between
fact, the use of colloids as model systems allows one to studio charged plates.
phenomena that are not easily accessible in atomic systems The objective of this paper is to outline a method for
[2]. The analyses of the resulting experimental observationgxtracting effective pair potentials from positional correla-
however, require self-consistent effective pair potentials betion functions obtained from 2D experiments using colloids
tween the particles, for a number of reasons. For instance, iand to shed some light on the interpretation of the extracted
the case of charged particles the effective charge on the papotentials. In Sec. I, we review some recent experimental
ticles often differs significantly from the charge estimatedstudies designed to probe the microscopic structure of con-
from titration experiments. The exact electrolyte concentrafined fluids. In Sec. Ill, we discuss a 2D version of the in-
tion in the dispersion is also difficult to estimate in many version of Ornstein-Zernike equation for extracting effective
cases. In addition, there is a strong likelihood of many-bodypotentials from positional correlations among the particles.
effects on the potential at conditions close to phase transithis method is then applied in Sec. IV to computer-
tions. Finally, as we shall see later in this paper, the effectivgenerated data for a 2D Lennard-Jones fluid at a large area
interaction potentials between particles confined betweefraction of 0.5 to examine the accuracy of the method and
two plates differ from the corresponding potentials at bulkthen to the experimenta(r) measured using digital video
conditions and remain ill-understood currently. microscopy by Kepler and FraddB] and Carbajal-Tinoco
The macroscopic properties of charge-stabilized colloidakt al. [4]. We conclude Sec. IV with a discussion of the
dispersions are usually understood using a theory of interadnfluence of experimental artifacts on the interpretation of
tion potential formulated by Derjaguin, Landau, Verwey, andthe experimental data in terms of effective interaction poten-
Overbeek about 50 years afff]. The effective pair potential tials. We conclude with a summary in Sec. V.
between two charged particle$‘macroions”) in the
Derjaguin-Landau-Verwey-OverbeeKDLVO) theory is
dominated by a repulsive interaction given by the Yukawa
form for low elecrostatic screening: A number of papers have appeared in recent years
[1,3,4,7,8 on structural transitions in quasi-2D systems of
charged colloidal dispersions. Some of these studies reveal

Il. QUASI-2D SYSTEMS OF CHARGED PARTICLES

o0, r<o . . .
) o o the existence of a long-range attractive component in the
UpLvo(r)=9 (Z&)° e* e R (1) effective pair potential and raise interesting questions on the
dwe (l+ko) 1’ ’ physical origin of such an attraction. We shall review some
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of these studies in this section in order to motivate the focusystems such as the one in the Kepler-Fraden experiments,
of the present paper. the narrow spacing between the confining plates makes the
Recently, Kepler and Fradd] have examined systems ionic strength of the dispersion an unknown as well because
consisting of aqueous dispersions of negatively chargedf the significant plate-solution interfacial area relative to the
polystyrene particles of diameter=1.27 um confined be- volume of the solution and the possible leaching and ionic
tween two glass platgalso negatively chargeédeparated by association or dissociation effects. In the absence of any rea-
a gap of 2—6um at relatively low number densities of the sonable guidance as to the form of the potential, Kepler and
particles(corresponding to area fractions ranging from 0.007Fraden resorted to a modified Lennard-Jones potential of the
to 0.03. The instantaneous configurations of the particles aréype shown below since a purely repulsive potential failed to
then recorded using time-lapse video microscopy. The expredict the experimentab(r)’s adequately. Kepler and
periments provide the radial distribution functig(r), con-  Fraden have fitted the experimentally measwég’s using
structed from averaging over 500-5000 “snapshofstn-  Brownian dynamics simulations and a modified Lennard-
since the particles are not strictly confined to a 2D plane but
can wander away from the plafeven if such “excursions”
are small. The implications of such excursions to the inter-

IV C. wherel=r/o—1, € is the depth of the potential minimum,
The experiment of Kepler and Fraden focuses on interacand @ anda are empirical fitting parameters. This analysis
tion forces in confined dispersions, but the analysis of theshows the existence of a long-range attractive component in

eters needed in the analysis are not accessible through direcnishes as the electrolyte concentration goes down.
measurements. For example, the effective charge on the par- The Kepler-Fraden potentials have been reinterpreted by
ticles is one such quantity and remains an unknowhdth  Tata and Arord9] in terms of the so-called Sogami potential

figurationg. We refer to these systems @sasi2D systems Jones potential given by
a 2a a a
U(I’)=4€ z — Z
pretation of effective potentials will be addressed in Sec.
data is not straightforward since some of the crucial paramu(r) and a minimum in the potential of about RgZ', which
2D and 3D experiments. In addition, in the case of quasi-20010]

, 2

0, r<o
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where all the symbols retain their meanings as in @9. (rather thanbare pair potentials because of either many-
The analysis of Tata and Arora consists of adjusting the pabody effects or the effects of the confining platesas we
rameters of the Sogami potential to fit the potentials of Kediscuss in Sec. IV Cthe excursions of the particles away
pler and Fradef3] by fixing the magnitude and the position from the 2D layer, attempts have also been made to measure
of the minimum. This amounts to adjusting the values for thehe potentials in very dilute dispersions or between isolated
charge Ze of the particle and the dimensionless Debyepairs of particles. Notable among such experiments is the
screening lengthko so as to make the Sogami form of the gnpe by Crocker and Gridi8], who have employed two op-
potential fit the I_<epler-Fraden results. More importantly, t04jqg] traps to hold an isolated pair of particles at a known
be able to do this successfully, Tata and Arora had to scalgjstance from each other and to record their mutual distances
the charge on the particle with respect to the concentration gif separation after release, from which the pair potential has
the added salt in an arbitrary fashion. been obtained using Boltzmann distribution. Crocker and
The experiments of Kepler and Fraden have been eXgrier have also corrected for the out-of-plane motions of the
tended to larger pzartlcle concentratiofi®., dimensionless particles so that the actual distances between the particles
number densityoo® from 0.023 to 0.48, close to freezing can be measured accurately. The result of Crocker and Grier
conditiong by Carbajal-Tinocoet al. [4]. The measured giso reveals an effective attraction between the particles
g(r)’s, however, have been analyzed somewhat more fofgnen the distance between the plates confining the particles
mally using some of the approximate closures to theg of the order of a few particle diameters. The attraction,

Ornstein-Zernike equation, such as the mean spherical appwever, vanishes for smaller distances between the plates.
proximation(MSA), the Percus-YevickPY) approximation \ye shall return to this in Sec. IV C.

and the hypernetted-chaiftiNC) approximation. We shall
comment on such ‘“single-step” inversions later in this pa-  1Il. INVERSION BASED ON INTEGRAL-EQUATION
per. The analysis of Carbajal-Tinoet al. also reveals the FORMALISM
existence of a long-range attraction in confined dispersions
even at large particle densities.

Since the experimental measurements of Kepler and The Ornstein-Zernike integral equation theory of fluids in
Fraden and Carbajal-Tinocet al. yield effectivepotentials three dimensions reduces formally to the same form in the

A. Structure factor S(q) for 2D liquids
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case of 2D liquids with all the correlations retaining their wherec(r) is the direct correlation function aril(r) is the
physical meanind11]. The only significant differences oc- so-called bridge function for given(r) and p. It follows
cur in the volume integral, which now becomes an area infrom Eq. (8) that

tegral, and in the manner in which the 2D Fourier transforms

are carried out. The static structure fac&fq) for an isotro- 1 1 —iarg 10
pic system is related to the radial distribution functigpfr) c(r)= 2mp - S(q) e a. (10
by
As B(r) in Eq.(9) is generally analytically intractable and
S(a)=1+ J e 19 a(r)=11dr. 4 is dnfflcullt to evaluatg numgrlcally, one ofFen res_orts to ap-
(@) P lo(r) =1 @ proximations forB(r) in solving the Ornstein-Zernike equa-
] ) tion for determiningS(q)’s for given u(r)’s. The approxi-
Carrying out the integral over angteleads to[12] mations to the closure equation leading to integral-equation
theories(such as the HNC equation, the PY equation, and the
S(q)=1+277pj rlg(r)—1]3,(qr)dr, (5) E\ﬁ]A) for 2D cases remain identical to the 3D counterparts

. . . The pair potentiali(r) can be determined uniquely from
where Jo(qr) is the zeroth-order Bessel function given by known g(r) and/orS(q) by rewriting Eq.(9) as
the defining relation

Bu(r)=—Ing(r)+g(r)—1—c(r)+B(r) (11)

1 .
Jo(qr)=ﬁf e '97de. (®) it one can evaluatd(r). However, sinceB(r) cannot be
computed unlesa(r) is already known, approximations are
The occurrence of the Bessel function in Ef) leads to a  usually made foB(r) so that Eq(11) can be used directly
crucial difference in the way the integral transform is evalu-to obtainu(r). The simplest approximation, namely, ignor-

ated by discretization in the 2D space. The discrete Fouriehd B(r) in Eq.(11), corresponds to the HNC approximation,
integra| transform is given bﬂ,for N data points’ W|ﬂ’g(|’) which we shall comment on in Sec. |V B. Notice that a direct

available forr<R] use of Eq(11) with approximations that allow the right-hand
side of the equation to be determined explicitly in terms of
N experimentally accessible quantities does not require any it-
S(qi) = 1+2’7sz1 rilg(r;)—21]3o(qirjdr;, (7) erative corrections t8(r) and hence is known asngle-step
1= inversion.

, . As we have discussed for the case of 3D syste§ Eq.
wherer ;= u;R/uy, wi's being the roots of the Bessel func- (11) can also be solved iteratively by writing it relative to the

tion, andg;=u;/R. For givenR andN, ther;'s andqg;’s are  ¢|ogyre for a suitably chosen “reference” potenti(r) as
fixed and equispaced in the 3D discrete transform. On the

other hand, in the 2D version, on€andN are fixed,r;'s g'(r)

andg;’s are determined by the zeros of the Bessel function Bu(r)=pu’(r)+In ) +[g(r)—g’(r)]
Jo(qr), a requirement needed to satisfy the orthogonality 9

property of the Fourier transform. Therefore, the discrete —[c(r)—c'(r)]+[B(r)—B’(r)], (12

version of the integral given in Eq7) takes the form of the

trapezoidal rule with unequal intervdlalthough, in the limit ~ where the prime omy’(r), ¢’(r), andB’(r) identifies them
of large N, the discretization in Eq(7) becomes almost as the ones corresponding to the reference potential).
equally spacel The importance of satisfying the orthogonal

property when evaluating the Fourier integral transforms has 2.5 : : : ‘

been demonstrated by Ladld2] for simple Gaussian func- 2D Lennard-Jones Fluid

tions. po?’=05 & T =15
2.0 |

XX X% X ecx
a000R0N K

B. Ornstein-Zernike inversion of S(q)

The “predictor-corrector” method we shall use here for 151

the extractingu(r) for a given experimentai(r) or S(q) is

identical in concept to the one proposed by Reattal.[13] 1.0 |

for 3D systems. We briefly summarize the steps involved.
The Ornstein-Zernike equation is given by

g(r)

0.5 |

g(r)—1=C(r)+pf c(r)lg(lr=r'—1]dr" (8

and the exact closure relation required for solving 8).is r/c
written as
FIG. 1. The radial distribution functiog(r) from Monte Carlo
g(r)=e Au+g(n—1-c(r)+B(r) (90  simulations for a 2D Lennard-Jones fluid@t? = 0.5.
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FIG. 2. Structure factoS(q) for the Lennard-Jones fluid ob- FIG. 3. The potential based on the iterative “predictor-

tained by a 2D Bessel transform gfr) shown in Fig. 1. The low- ¢ pector’ method for the Lennard-Jones fluid shown along with
q results forS(q) are obtained directly from the Monte Carlo simu- he original potential. The initial potential used in the iteration is

lations. also shown.

An iterative predictor-corrector method that refiner) at  gjngle-step HNC inversion underestimates the minimum by
each step such th&'(r)—B(r) then leads to the following  apout 209%, although the location of the minimum is overes-

predictor foru(r): timated by only about 5%.
Bu;(r)=pui_1(r)+g(r)—gj_1(r)+ In( gig(lr()r)) B. Inversion for confined dispersions
We now examine a few typical sets of experimental data
N 1 1 1 —igrg 13 reported by Kepler and Frad¢8] and Carbajal-Tinocet al.
2mp) |S(q) S_1(q) € a 13 [4]. First we consider case of Kepler and Fraden, which

corresponds to a densityo? of 0.0194 (area fraction of
where we have used E(LO) to write thec(r)’s in terms of  0.019. This is one of the cases for which the analysis of
the corresponding(q)’s. The subscripts andi—1 in the  Kepler and Fraden indicates a long-range attraction. The cor-
above equation denote the results of the corresponding itergector steps in the inversions reported in this section use
tions. If the functionsg;_,(r) and S;_;(q) are computed Monte Carlo simulations with 400 particles, an equilibration
exactly in each iteration in the corrector stgpe., for the  run of 5000 MCS, and an averaging run of 50 000 MCS. A
iterate u;_1(r)], the predictionu;(r) will converge to the larger number of MCS is used for the averages lieative
potentialu(r) corresponding to the giveg(r) andS(q). An to the averages here LJ case minimize the statistical
approximate corrector sufficient for most practical ca$ess  noise: a problem usually common in the simulation of dilute
3D systemp has been presented elsewhéid]; here we systems. The result far(r), shown in Fig. 4 along with the

shall use a computer-simulation-based corrector. result of Kepler and Fraden, is practically identical to the
potential obtained by Kepler and Fraden and confirms the
IV. RESULTS AND DISCUSSION accuracy of their trial-and-error analysis in this case. This is

not the case for the data set correspondingdd=0.0307
(casef of Kepler and Fradenthe result for which is shown
We begin with a test case based on simulated data im Fig. 5. In this instance, the Kepler-Fraden analysis leads to
order to illustrate the quality of the results that can be ex-an essentially purely repulsive potential, while our inversion
pected from the inversion and the quality of the data neededndicates that the effective potential still shows a minimum,
This is important for interpreting the results based on realith a fairly substantial attractive tail. In both cases, the in-
data and for determining the quality of data one needs twerted potentials reproduce the experimentally observed ra-
demand from physical experiments. The test case we hawdial distribution functions very well, as shown in Fig. 6 for
chosen is a 2D Lennard-Jonés)) fluid at po?=0.5 and casef of Fraden and Kepler.
T* =kgT/e=1.5. A canonical Monte Carlo simulation with It is instructive to examine the equivalent Sogami poten-
225 particles has been used for obtainpg) and S(q), tials obtained by Tata and Arof@] for the Kepler-Fraden
with an equilibration run of 5000 Monte Carlo sted8CS) data. As mentioned in Sec. Il, Tata and Arora have reinter-
and a subsequent run of 10 000 MCS for the averages. Thareted the results of Kepler and Fraden using the Sogami
resultingg(r) andS(q) are shown in Figs. 1 and 2, respec- potential in an attempt to account for the physical origin of
tively, and the extracted pair potential is shown in Fig. 3the attractive tail. The Sogami forms of the potentials ob-
along with the original potential. The result in Fig. 3 showstained by Tata and Arora are also shown in Figs. 4 and 5 and
that the inversion can extract very accurate potenfigithin ~ are based on fitting the Kepler-Fraden results by adjusting
2—3% erroy even under extreme conditior($n contrast, the the parameters of the Sogami potenfitl]. The potentials

A. Inversion for a Lennard-Jones fluid
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FIG. 4. Pair potential based on the predictor-corrector method FIG. 6. Radial distribution functiog(r) obtained from the ex-
for casec (pa?=0.0194) of Kepler and Fraddi3] along with the  tracted potential for cask of Kepler and Fradef3]. The original
Kepler-Fraden result. The result of Tata and Ar¢g] is also  data andy(r) based on the Tata-Arora potential are also shown.
shown.

(particularly at large particle concentrations or when the in-
thus obtained, however, differ noticeably from the Kepler-teractions are strongas we have noted elsewhei,18.
Fraden results and ours, as evident from Figs. 4 and 5. Morgnder such conditions, the rigorous inversion that we have
importantly, the Tata-Arora results dwt reproduce the ex- outlined in Sec. Ill becomes indispensable. In order to exam-
perimentalg(r)’s, as illustrated fopo2=0.0307(casef of  IN€ the effect of using approximate closure_ relations, we have
Kepler and Fradenin Fig. 6, which shows a significant dif- mverteq the data corresp_ondl_ng to the h|92]hest partlc_le con-
ference ing(r) near the first-coordination shell. In particular, entration used by Carbajal-Tinoed al. (po°=0.48) using
the differences observed in(r) and g(r) are substantial the _pred|ctor—c0rrector me.thod and t.he HNC approximation
enough to affect those properties of the systerg., osmotic ~ [Which corresponds to takinB(r)=0 in Eq.(11)]. The re-
pressurgthat depend on the core afr) andg(r) [15]. sults are shown in Fig. 7. Whlle_ the_ exact inversion demon-

As mentioned earlier, Carbajal-Tinoe al. [4] have ex- strates the existence of attraction in the po_tentllal, one can
tended the Kepler-Fraden experiments to larger particle cor!SO see that the hypernetted-chain approximation leads to
centrations, up to near-freezing conditionpof=0.48). quantitatively incorrect results.

Carbajal-Tinocoet al, however, analyze their data using
single-step inversion methodg.g., MSA, PY, and HNC C. Source of attraction in confined charged colloids

mentioned in Sec. Il to obtain(r). Because such methods  \while the inversion method described here clearly estab-
resort to severe approximations of the bridge function, thgishes the existence of an effective attraction in confined
inversion can lead to even qua“ta“vely Incorrect poten“al%harged dispersionS, it of course cannot provide a physica|

basis for such an attractig7]. In this section, we comment

0.4
- Inverted Potential L0 T
——XKepler-Fraden result > Present Method
— —-Tata-Arora result P ——Single-Step HNC
02} B
) 0.5]%
Fi T
—~ ém E
St
A
0.0 ™
= &
=}
0.0
-0.2
1 2 3 4 5 6 7 8 0.5 .
r/c 1.

r/c
FIG. 5. Pair potential based on the predictor-corrector method

for casef of Kepler and Fradef3] (po?=0.0307) along with the FIG. 7. Pair potential based on the predictor-corrector method
Kepler-Fraden result. The result of Tata and Arg] is also  for po?=0.48 using the data of Carbajal-Tinoeo al. [4], along
shown. with the inversion based on the hypernetted-chain closure.
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FIG. 8. Radial distribution functiong(r) from Monte Carlo FIG. 9. Structure factorS§(q) from Monte Carlo simulations for

simulations for 2D(i.e., 5=0) and quasi-20i.e., 5=0.5) disper- 2D (i.e., =0) and quasi-20i.e., §=0.5) dispersions.
sions.
particles have been estimated using variations in the image
on an important experimental artifact in imaging experimentsntensity. The Crocker-Grier experiments isolate a pair of
that can lead to ampparentattraction in the pair potential. particles using two optical tweezers and follow the interpar-
We also comment on one possible source of the attractioticle separation as a function of time once the particles are
when the artifact is corrected in the experimei@k released. The pair potentialr) can then be obtained from
The analyses of Ref§3,4] assume that the excursions of the tranjectories of the particles. The results of Crocker and
the particles away from the image plane are negligible. HowGrier show thatu(r) is purely repulsive when the charged
ever, even small displacements away from the plane caglass plates confining the dispersion are far apart. However,
skew the observed(r) sufficiently to introduce an apparent u(r) shows attraction for smaller separatioh$etween the
attraction inug¢¢(r). Out-of-plane displacements do not nec- plates and the attraction vanishes on further reductions in the
essarily appear to be negligible in the above experiments gflate separation.
Kepler and Fraden and Carbajal-Tinoeb al. as can be Because thez-directional displacements have been ac-
noted, for example, from case in Ref. [3], which shows counted for in the Crocker-Grier experiments, the attraction
noticeable deviations @j(r) from zero everinside the core  in u(r) in this case cannot be attributed to the out-of-plane
Similar situations are also apparent from the data okxcursions of the particles. It is likely that the effective at-
Carbajal-Tinoccet al. traction here arises from the repulsion of the wandering par-
We illustrate our point using Monte Carlo simulations of ticle by the charged, confining plates toward the other par-
particles confined between two hard plates separated bycle when the plates are far enough to allow excursions but
(1+ 8) o, wheres=0 for a strictly 2D system. The particles close enough to exert influence. However, wheis very
are assumed to interact through the repulsive part of a Ldmall, the particles are essentially confined to the midplane
potential shifted up by the magnitude of the LJ minimum.and the attraction would be expected to vanish. The magni-
Figure 8 showsgy(r)’s for 6=0 and 0.5. Theg(r) for the  tudes and shapes af;(r)’s, of course, will depend on the
guasi-2Dcase(i.e., 5>0) is obtained from particle positions
projected onto the image plane, i.e., thg plane(as done in
the experimentg3,4]). The differences ing(r) for 6>0, 0.4
particularly the broadening of the primary peak, are indica-
tive of the softening olu.¢¢(r) and of the possibility of at-
traction. The differences of importance in the extraction of
the pair potential show up in the limit @— 0 in the struc-
ture factorS(q), as shown in Fig. 9. Therefore, it often be- Em
comes important to use both good qualiffr) and Sq) in §
the inversion(see alsd16]). The potentials inverted using &
the method of Sec. Ill and the data in Figs. 8 and 9 are s
shown in Fig. 10 and clearly demonstrate the influence o
out-of-plane excursions of the particles on the effective po-
tential. In particular, the effective potential has an attraction,
although the actual potential is purely repulsive. , e
These results doot rule out other sources of attraction. In
an attempt to correct for the out-of-plane movements of the r/c
particles, Crocker and Grig8] have conducted a series of
experiments in which the-directional displacements of the FIG. 10. Inverted potentials for the data shown in Figs. 8 and 9.

—35=0.0
---8=05 |
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experimental conditionge.g., charges on the plates and thereport only repulsion, the predictor-corrector inversion
particles, ionic equilibria, etg.and the quantitative details shows the existence of attraction. We have pointed out the
will depend on more than the above geometric argument. need for correcting for the out-of-plane motions of the par-
ticles in imaging experiments and suggest a reason for the
appearance of attractiafand its subsequent disappearance

) even when the experiments account for the excursions of the
We have presented a 2D extension of the computerpgyticles.

simulation-based predictor-corrector inversion method for
the extraction of the interaction potential from structural data
[g(r) or S(q)]. When applied to the data of Kepler and
Fraden[3] and Carbajal-Tinocet al. [4], the method con- We thank the National Science Foundation and the Texas
firms the appearance of attraction lirfr) unambiguously. Higher Education Coordinating Board for partial support of
Moreover, even in the one case for which Kepler and Fradethis work.

V. CONCLUDING REMARKS
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